
Journal of Magnetic Resonance 210 (2011) 141–145
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Communication

Surface-to-volume ratio with oscillating gradients

Dmitry S. Novikov a,⇑, Valerij G. Kiselev b

a Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
b University Medical Center Freiburg, Department of Radiology, Medical Physics, Breisacher Str. 60a, 79106 Freiburg, Germany
a r t i c l e i n f o

Article history:
Received 18 November 2010
Revised 6 February 2011
Available online 16 February 2011

Keywords:
Diffusion
Dispersion
Effective medium
Oscillating gradients
Surface-to-volume ratio
1090-7807/$ - see front matter � 2011 Elsevier Inc. A
doi:10.1016/j.jmr.2011.02.011

⇑ Corresponding author.
E-mail address: dima@alum.mit.edu (D.S. Novikov
a b s t r a c t

Restrictions to diffusion result in the dispersion of the bulk diffusion coefficient. We derive the exact uni-
versal high-frequency behavior of the diffusion coefficient in terms of the surface-to-volume ratio of the
restrictions. This frequency dependence can be applied to quantify structure of complex samples with
NMR using oscillating field gradients and static-gradient CPMG. We also demonstrate the inter-relations
between different equivalent diffusion metrics, and describe how to calculate the effect of restrictions for
arbitrary gradient waveforms.
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1. Introduction

The universal short-time behavior [1] of the diffusion
coefficient

DðtÞ ’ D0 1� 4
3d

ffiffiffiffi
p
p � S

V

ffiffiffiffiffiffiffiffi
D0t

p� �
; D0 � Djt¼0; ð1Þ

allows one to determine the surface-to-volume ratio S/V of restric-
tions in porous materials [2,3] and in biological tissues [4]. Here D0

is the unrestricted diffusion coefficient, and d is the effective spatial
dimensionality, with the factor 1/d arising from the orientational
average of the restrictions assuming their statistically isotropic dis-
tribution [1].

While Eq. (1) has been instrumental in characterizing restric-
tions in a variety of media, the direct measurement of D(t) with
pulse field gradient (PFG) diffusion-weighted NMR at millisecond
time scales is often technically challenging, especially in the
in vivo applications.

A promising way to get into the short-time limit is to apply the
oscillating gradient (OG) method [5], where the diffusion weight-
ing is effectively accumulated over many periods of oscillation. In
this way, the time scale for the diffusivity (the oscillation period)
can be much shorter than the total acquisition time thus enabling
practical measurements. A variant of this technique requires a con-
stant diffusion gradient, where the temporal modulation is
achieved by applying periodic radiofrequency pulses of the CPMG
type [5–7].
ll rights reserved.

).
In view of applying the oscillating techniques [5–7], an immedi-
ate question is, what exactly should one substitute for the diffusion
time t in Eq. (1)? As t � 1/x, where x is the gradient oscillation
angular frequency, the right-hand side of Eq. (1) must transform
in the frequency domain to

D0 1� Cd
S
V

ffiffiffiffiffiffi
D0

x

r !
; x!1:

Quite remarkably, the prefactor Cd in this expression has never been
explicitly derived for the OG case. The existing analytical results are
concerned with a finite number of echoes [8–13]. Furthermore,
there exists a discrepancy between the numerical values of Cd pro-
vided by different groups [13–17].

In this work, we find the prefactor Cd exactly both for the OG and
CPMG cases (Eqs. (10) and (12) below) in the limit of a large num-
ber of oscillations. This limit is practically applicable for high oscil-
lation frequencies in accord with the requirement of short
diffusion time for the validity of Eq. (1). We show that the exact
prefactor values for the infinite OG and CPMG trains differ by less
than 1% from each other (Eq. (12)), thereby justifying the view of
the CPMG method as being basically equivalent to the OG, and val-
idate the approximate numerical values found in Ref. [14] for the
CPMG and in Ref. [15] for the OG. To derive our result, we utilize
the recently established equivalence between the PFG and OG dif-
fusivities using the effective-medium description of diffusion in
disordered materials [18,19].

Here, as in Ref. [1], we do not take into account the confounding
effects of heterogeneous magnetic susceptibility or relaxation.
These effects generally make the interpretation of the diffusion-
weighted measurements challenging [13,20–22]. For the shortest
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times, they are less relevant; in particular, the effect of the surface
relaxation at the pore walls can be factored out [13]. However, the
confounding effects can accumulate over the total acquisition time
of many oscillations, significantly modifying the apparent S/V ratio.

2. Methods

In this section we outline the relations between the second
cumulant of the diffusion-weighted signal and the diffusion char-
acteristics relevant for the PFG and OG measurements, valid for
any statistically isotropic disordered medium. In Section 3 we will
apply these relations to the problem in question.

2.1. The second cumulant

We begin with the Gaussian phase approximation [23,24] to the
diffusion-weighted signal, S,

� ln SðTÞ ’ 1
2

Z T

0
dt1dt2 qðt1Þhvðt1Þvðt2Þiqðt2Þ; ð2Þ

which amounts to keeping the second-order term of the cumulant
expansion [25]. The signal depends on the total duration T of the
gradient train g(t), and is a functional of the diffusion-weighting
qðtÞ ¼ c

R t
0 dt0gðt0Þ, with c the gyromagnetic ratio. The diffusion is

characterized by the autocorrelation function hv(t1)v(t2)i of molecu-
lar velocity, an even function of t1 � t2 in stationary media. As we
assumed isotropic diffusion from the outset, v here is the velocity
component along the fixed direction of the applied gradient. For
uniform media, hv(t1)v(t2)i = 2D0d(t1 � t2), leading to the standard
expression �lnS = bD0 with b ¼

R T
0 q2ðtÞdt.

Here we will utilize an equivalent, and often more convenient
way to represent Eq. (2), in terms of Fourier transformed quanti-
ties, such as qx ¼

R T
0 dt eixtqðtÞ:

� ln SðTÞ ’ 1
2

Z
dx
2p

q�xhv�xvxiqx: ð3Þ

The velocity autocorrelator in the frequency representation is de-
fined as hv�xvxi �

R1
�1 dseixshvðt0 þ sÞvðt0Þi independent of t0

due to time translation invariance. The representation (3) under-
scores that, knowing the correlator hv�xvxi, one can evaluate the
diffusion-weighted signal (2) for any gradient waveform g(t). Con-
versely, by selecting a particular form of q(t) according to its Fourier
Fig. 1. General relations between the three diffusion met
representation qx, one effectively allocates a larger or a smaller
weight to particular Fourier harmonics hv�xvxi contributing to
the measured signal (3).

There are two advantages of working in the frequency represen-
tation (3). From the practical standpoint, a single integral in x is
simpler than a double integral in t. This reduction is due to the time
translation invariance not explicitly utilized in Eq. (2). From the
fundamental standpoint, hv�xvxi is directly related to the disper-
sive diffusivity DðxÞ discussed below.

2.2. The dispersive diffusivity

As outlined in detail in Ref. [19], the dispersive diffusivityDðxÞ is
a retarded response function relating the temporal Fourier compo-
nent Jx;r ¼ �DðxÞrrWx;r of the current J(t,r) of diffusing particles
to that of a lump of particle densityW(t,r). This makesDðxÞa central
object in the effective medium description of diffusion in disordered
media, as it defines the disorder-averaged diffusion equation

�ixWx;r ¼ DðxÞr2
r Wx;r þ O r4

r Wx;r

� �
which incorporates the characteristics of the restrictions that can be
quantified with a bulk measurement. At the same time,
DðxÞ ¼

R1
0 dt eixtDðtÞ is the Fourier transform of the retarded veloc-

ity autocorrelator DðtÞ � hðtÞhvðtÞvð0Þi, with h(t) a unit step func-
tion, cf. Fig. 1 and Ref. [19]. Therefore,

hv�xvxi � 2ReDðxÞ:

As a result, the knowledge of DðxÞ allows one to find the second
cumulant contribution to the signal attenuation for any pulse se-
quence g(t) via Eq. (3):

� ln SðTÞ ’
Z

dx
2p

q�xDðxÞqx: ð4Þ

Here, only ReDðxÞ contributes, as ImDðxÞ, odd in x, yields zero
after being integrated with an even function jqxj2. ImDðxÞ does
not contain additional information as it can be restored using the
Kramers–Kronig relations [26]. As we show below, it may be useful
to work with the analytic function DðxÞ rather than with its real
part.

The dispersive diffusivity can be obtained exactly from the nar-
row-pulse PFG diffusion coefficient D(t) � hx2i/2t via
rics: DðxÞ; DðtÞ and D(t), and the signal attenuation.
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DðxÞ ¼ D0 þ
Z 1

0
dt eixt@2

t ½tDðtÞ�; ð5Þ

where D0 � D(t)jt=0 (cf. Eq. (D3) in Appendix D of Ref. [19]). The
three diffusion metrics: the dispersive diffusivity DðxÞ; the re-
tarded velocity autocorrelator DðtÞ; and the time-dependent diffu-
sion coefficient D(t) contain the same amount of information
about restrictions, and thus can be expressed via each other [19],
as illustrated schematically in Fig. 1.

2.3. Oscillating gradients

A comprehensive diffusion-weighted measurement must pro-
vide a way to obtain the diffusivity DðxÞ, or the correlator hv�xvxi,
for all x. From this point of view, the OG method, with
g(t) = g0 cosx0t, is the easiest one to interpret, as in the limit of
the large number N = x0T/2p� 1 of oscillations,

qx ¼
ipcg0

x0
½dðx�x0Þ � dðxþx0Þ�

effectively selects the x0 component hv�x0 vx0 i, so that

� ln SðTÞjgðtÞ¼g0 cos x0t ’
ðcg0Þ

2T
2x2

0

� ReDðx0Þ: ð6Þ

Here we used d(x)jx=0 = T/2p from the Fourier representation of
d(x). As a result, it is ReDðxÞ that is measured via the OG tech-
niques [19]. In the above equation, the attenuation over each oscil-
lation period is accumulated, such that the signal S ¼
expð�b � ReDðx0ÞÞ with b ¼ Nb1; b1 � pðcg0Þ

2
=x3

0. For the disper-
sive DðxÞ, the b-value alone does not define the measurement:
the same value, achieved with different oscillation frequencies x0,
will yield different results for S.

Remarkably, the signal S is also sensitive to the initial phase u
of the oscillation gu(t) = g0cos(x0t � u), yielding

� ln SðTÞjguðtÞ ’
ðcg0Þ

2T
x2

0

� 1
2

ReDðx0Þ þ sin2u � DðTÞ
� �

; ð7Þ

where DðTÞ ’ D1 � DðxÞjx!0 ¼ DðtÞjt!1 practically is the tortuos-
ity asymptote, since the latter is typically reached over the suffi-
ciently long total measurement time T. Physically, the initial
phase u leads to the admixture of the PFG attenuation over the time
T due to the nonzero value of qxjx?0 / sinu, cf. Ref. [27] for u ¼ p

2.
Eq. (6), as well as its more general counterpart (7), link the dif-

fusive response function DðxÞ of any medium to the OG attenua-
tion with N� 1 oscillations.

The above relations reduce the original problem to finding the
diffusivity DðxÞ for the system in which the PFG diffusion coeffi-
cient is given by Eq. (1). It can be done either by solving the prob-
lem [1] in the x-representation, or from a Fourier transform of the
retarded velocity autocorrelator DðtÞ, or directly from the time-
dependent diffusion coefficient D(t) such as the one in Eq. (1), mea-
sured by ideal narrow-pulse PFG, via Eq. (5).

3. Results

3.1. Dispersive diffusivity at high frequencies

Below we find the high frequency limit of DðxÞ corresponding
to Eq. (1) in three different ways, in order to demonstrate the in-
ter-relations between the above diffusion metrics (Fig. 1): (i) di-
rectly from Eq. (1) using Eq. (5); (ii) from the recent result for
the diffusivity restricted by membranes [18] derived in the fre-
quency representation from the very beginning; and (iii) from
the velocity autocorrelator DðtÞ near a flat impermeable wall
[28,29].
(i) The most direct way to obtain DðxÞ is to use the exact rela-
tion (5). In general, this relation allows one to find DðxÞ for
all x knowing D(t) for all t. However, it can be also utilized
to relate each term of the expansion of D(t) for short or for
long t to the corresponding term of the expansion of DðxÞ
for high or for low x, respectively. Such expansions in the
(fractional) powers of t or 1/t usually have finite (or even
zero) convergence radius, hence their frequency counter-
parts should be used within the corresponding bounds. With
all that in mind, we substitute the second term of Eq. (1) into
Eq. (5). Reducing the Fourier integral to the Gamma-function
by rotating the integration contour xt ¼ eip=2u;R1

0 dt eixtt�1=2 ¼ eip=4x�1=2C 1
2

	 

¼ eip=4

ffiffiffiffiffiffiffiffiffiffi
p=x

p
, we find the

universal high frequency limit of the dispersive diffusivity
DðxÞ ’ D0 1� eip=4

d
S
V

ffiffiffiffiffiffi
D0

x

r !
; x!1; ð8Þ

which directly leads to our main result (10) below.
Eq. (8) is the exact universal high-frequency limit of the
dispersive diffusivity in the presence of restrictions, valid
in the limit in which Eq. (1) applies. Further corrections in
the inverse powers of x will contain information about the
permeability and curvature of the barriers, as well as the
spatial correlations between them [18].

(ii) In recent Ref. [18], the problem of diffusion restricted by flat
permeable membranes was considered in the frequency rep-
resentation. At high frequencies, this solution is completely
equivalent to that of Mitra et al. [1], as in the latter work
the impermeable pore walls are approximated by locally flat
randomly oriented planes as long as the diffusion length is
much smaller than the curvature radius of the walls. Eq.
(8) then follows from the x ?1 limit of DðxÞ found in
Ref. [18], keeping only the Oðx�1=2Þ term.

(iii) Finally, in Refs. [28,29] the correction dDðtÞ to the one-
dimensional velocity autocorrelator h(t)hv(t)v(0)i in an
impermeable box of size L was expressed as the mean
dDðtÞ ¼ 1
L

Z L

0
v̂ðtÞGðxt; x�; tÞv̂ð0Þdx0dx�dxtdxtþ�;

where �? 0, G(x2,x1; t) is the exact diffusion propagator, and
the velocity operator v̂ðtÞ � ½ðxtþ� � xtÞ=��Gðxtþ�; xt; �Þ !
�2D0d

0ðxtþ� � xtÞ. Indeed, when integrated with any smooth
function f ðxÞ; v̂ gives

lim
�!0

Z L

0
dxdx0

x� x0

�
Gðx; x0; �Þf ðxÞ ¼ �2D0

Z L

0
dxdx0 f ðxÞd0ðx� x0Þ

¼ D0½f ðLÞ � f ð0Þ�

since G at short times becomes Gaussian, G ?
G0(x � x0;�) ? d(x � x0), with x�x0

� G0 ¼ �2D0@xG0. Hence

dDðtÞjt>0 ¼ �
2
L

D2
0Gð0;0; tÞ ¼ � S

V
D2

0ffiffiffiffiffiffiffiffiffiffiffi
pD0t
p

for L�
ffiffiffiffiffiffiffiffi
D0t
p

, where 2/L � S/V. In the last expression we used
the mirror image result for the propagator G(x,x0; t) =
G0(x � x0; t) + G0(x + x0; t) near a wall. Averaging over the ori-
entations in d dimensions leads to

DðtÞ ¼ D0hðtÞ dðtÞ � 1
d
ffiffiffiffi
p
p S

V

ffiffiffiffiffiffi
D0
p ffiffi

t
p

� �
: ð9Þ

Eq. (8) is indeed the Fourier transform of this expression
(here the first term should be understood as limg?+0

d(t � g), as explained in Appendix D of Ref. [19]). This deriva-
tion completes the ‘‘triangle’’ of inter-relations in Fig. 1.
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3.2. Oscillating gradients

Taking the real part of Eq. (8) we arrive at our main result,

ReDðxÞ ’ D0 1� Cd
S
V

ffiffiffiffiffiffi
D0

x

r !
; Cd ¼

1
d
ffiffiffi
2
p ð10Þ

in d dimensions. Note that, for the phase-shifted OG sequence, Eq.
(10) defines only the first term in Eq. (7), whereas the second term,
/D(T), depends on the particular system geometry over large spatial
scales �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DðTÞT

p
.

The above value of Cd contradicts the calculation reported in
Refs. [16,17], where the corresponding prefactor 1:11 � 4

p � 1:41
(presumably for the three-dimensional case) is about six times
greater than our C3.

In Ref. [15], the above result for d = 3 was represented in the
form 4c=ð9

ffiffiffiffi
p
p
Þ � ðS=VÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D0Deff
p

, where Deff = 1/(4f) = p/(2x) was
called the effective diffusion time [30], and the correction factor
c � 0.73 was evaluated numerically. The exact value is c = 3/4
according to Eq. (10), which indicates a 3% deviation in the numer-
ical approximation found in Ref. [15].

3.3. CPMG in a constant gradient

A closely related measurement technique is the CPMG train in
the presence of a constant gradient [5–7]. Let the interval between
successive echoes be 2s, with the rf pulses applied at
t = s, 3s, 5s, . . . (cf. notation of Ref. [14]). This is equivalent to the
box-shaped oscillating gradients g(t) alternating between the val-
ues ±g0 with the frequency x0 = 2p/4s, with 4s being the OG per-
iod. The Fourier decomposition of this effective square gradient
waveform

gðtÞ ¼ 4g0

p
X1
k¼0

ð�Þk cos xkt
2kþ 1

; xk ¼ ð2kþ 1Þx0:

The corresponding q(t) has the Fourier decomposition

qx ¼
4cg0

ix0

X1
k¼0

ð�Þk

ð2kþ 1Þ2
½dðxþxkÞ � dðx�xkÞ�:

Substituting it into Eq. (4), we find the signal accumulated over a
large measurement interval T = 2ns, n� 1:

� ln SðTÞ ¼ 8ðcg0Þ
2T

p2x2
0

X1
k¼0

1

ð2kþ 1Þ4
ReDðxkÞ:

Using the above expression (10), find

� ln SðTÞ ¼ p2ðcg0Þ
2D0T

12x2
0

1� eCd
S
V

ffiffiffiffiffiffiffi
D0

x0

s !
; ð11Þ

where

eC d ¼ Cd �
s9=2

s4
� 0:99351277Cd: ð12Þ

Here sm ¼
P1

k¼0ð2kþ 1Þ�m ¼ ð1� 2�mÞfðmÞ, where f(m) is the Riemann
f-function. In particular, s4 = p4/96.

The 1=
ffiffiffiffiffiffiffi
x0
p

term in the exact result (11) can be written as
�eCd

ffiffiffiffiffiffiffiffiffi
2=p

p
S
ffiffiffiffiffiffiffiffiffi
D0s
p

=V � �0:186843S
ffiffiffiffiffiffiffiffiffi
D0s
p

=V . The numerical prefac-
tor here agrees well with the approximate numerical limit, �0.19
(Ref. [14]), of the calculation for the finite number of pulses per-
formed in the time domain [10,11].

4. Discussion

Our approach shows that the exact prefactor Cd, Eq. (10) (and its
CPMG modification (12)), is as universal and independent on the
system geometry, as is the corresponding coefficient 4=3d
ffiffiffiffi
p
p

in
the original result (1). The simplicity and generality of this deriva-
tion underscores the utility of the dispersive diffusivity DðxÞ.
Keeping the diffusivity complex-valued simplifies calculations in
many contexts [18,19]; taking its real part or relating DðxÞ to
D(t) is best left for the very last step.

We also note that in general, the concept of the effective diffu-
sion time for the OG protocols [9,30] is well defined only as an or-
der-of-magnitude estimate, t � 1/x. Indeed, the relations between
DðxÞ and D(t) are nonlocal integral relations in time or in fre-
quency [18,19], i.e. to determine DðxÞ one needs to know D(t)
for all t, and vice-versa, to determine D(t) one needs to know
DðxÞ for all x. For the particular short-time limit (1), it was possi-
ble to relate the 1=

ffiffiffiffiffi
x
p

term in the expansion of DðxÞ to the corre-
sponding

ffiffi
t
p

term in D(t), which may prompt one to define some
effective diffusion time teff = b/x so that the relative changes in
Eqs. (1) and (10) are the same (this happens for b = 9p/32). How-
ever, this exact proportionality relation generally does not hold
for all x, i.e. one cannot define some constant b such that
ReDðxÞ ¼ DðtÞjt¼b=x for all t. Instead, one has to use the exact inte-
gral relations [19] between these quantities.

The effect of restrictions can be calculated for arbitrary gradient
waveform using Eqs. (4) and (10) or their time-domain counter-
parts. In particular, one can use a gradient waveform defined as a
numerical table in magnet’s software.
5. Conclusions

In this work we used the equivalence between the description
of restricted diffusion in time and frequency domains, to find the
exact high-frequency behavior for the frequency-dependent diffu-
sivity in disordered media with restrictions, accessible with the
oscillating gradient and static-gradient CPMG protocols. Our re-
sults will allow one to determine the surface-to-volume ratio of
restrictions using the measurement techniques naturally suitable
for the shortest time scales. We also demonstrated how the effec-
tive medium approach unifies and relates to each other different
diffusion metrics, such as the velocity autocorrelator and the time-
and frequency-dependent diffusion coefficients.
Acknowledgments

This work was motivated by discussions with Junzhong Xu and
Lukasz Zielinski. It is a pleasure to thank them, as well as Jens Jen-
sen, for numerous helpful comments on the manuscript.
References

[1] P.P. Mitra, P.N. Sen, L.M. Schwartz, P. Le Doussal, Diffusion propagator as a
probe of the structure of porous media, Phys. Rev. Lett. 68 (1992) 3555–3558.

[2] L.L. Latour, P.P. Mitra, R.L. Kleinberg, C.H. Sotak, Time-dependent diffusion
coefficient of fluids in porous media as a probe of surface-to-volume ratio, J.
Magn. Reson. Ser. A 101 (1993) 342–346.

[3] R.W. Mair, G.P. Wong, D. Hoffmann, M.D. Hürlimann, S. Patz, L.M. Schwartz,
R.L. Walsworth, Probing porous media with gas diffusion NMR, Phys. Rev. Lett.
83 (1999) 3324.

[4] L.L. Latour, K. Svoboda, P.P. Mitra, C.H. Sotak, Time-dependent diffusion of
water in a biological model system, Proc. Natl. Acad. Sci. USA 91 (1994) 1229.

[5] J. Stepis̆nik, Analysis of NMR self-diffusion measurements by a density matrix
calculation, Physica B 104 (1981) 350–364.

[6] P.T. Callaghan, J. Stepis̆nik, Frequency-domain analysis of spin motion using
modulated gradient NMR, J. Magn. Reson. A 117 (1995) 118.

[7] P.T. Callaghan, J. Stepis̆nik, Generalised Analysis of Motion Using Magnetic
Field Gradients, Advances in Magnetic and Optical Resonance, vol. 19,
Academic Press, New York, 1996, pp. 324–397.

[8] T.M. de Swiet, P.N. Sen, Decay of nuclear magnetization by bounded diffusion
in a constant field gradient, J. Chem. Phys. 100 (1994) 5597–5604.

[9] E.J. Fordham, P.P. Mitra, L.L. Latour, Diffusion times in multiple-pulse PFG
diffusion measurements in porous media, J. Magn. Reson. A 121 (1996) 187–
192.



D.S. Novikov, V.G. Kiselev / Journal of Magnetic Resonance 210 (2011) 141–145 145
[10] P.N. Sen, A. André, S. Axelrod, Spin echoes of nuclear magnetization diffusing in
a constant magnetic field gradient and in a restricted geometry, J. Chem. Phys.
111 (1999) 6548.

[11] S. Axelrod, P.N. Sen, Nuclear magnetic resonance spin echoes for restricted
diffusion in an inhomogeneous field: methods and asymptotic regimes, J.
Chem. Phys. 114 (2001) 6878.

[12] L.J. Zielinski, P.N. Sen, Restricted diffusion in grossly inhomogeneous fields, J.
Magn. Reson. 164 (2003) 145–153.

[13] L.J. Zielinski, Effect of internal gradients in the nuclear magnetic resonance
measurement of the surface-to-volume ratio, J. Chem. Phys. 121 (2004) 352.

[14] L.J. Zielinski, M.D. Hürlimann, Probing short length scales with restricted
diffusion in a static gradient using the CPMG sequence, J. Magn. Reson. 172
(2005) 161–167.

[15] J. Xu, J. Xie, J. Jourquin, D.C. Colvin, M.D. Does, V. Quaranta, J.C. Gore, The
influence of cell cycle phase on ADC in synchronized cells detected using
temporal diffusion spectroscopy, Magn. Reson. Med., in press, doi:10.1002/
mrm.22704.

[16] J. Stepis̆nik, A. Mohoric̆, A. Duh, Diffusion and flow in a porous structure by the
gradient spin echo spectral analysis, Physica B 307 (2001) 158–168.

[17] J. Stepis̆nik, S. Lasic̆, A. Mohoric̆, I. Sers̆a, A. Sepe, Velocity autocorrelation
spectra of fluid in porous media measured by the CPMG sequence and constant
magnetic field gradient, Magn. Reson. Imaging 25 (2007) 517–520.

[18] D.S. Novikov, E. Fieremans, J.H. Jensen, J.A. Helpern, Random walks with
barriers, Nature Phys. (2011), doi:10.1038/nphys1936.

[19] D.S. Novikov, V.G. Kiselev, Effective medium theory of a diffusion-weighted
signal, NMR Biomed. 23 (2010) 682–697.

[20] R.P. Kennan, J. Zhong, J.C. Gore, On the relative importance of paramagnetic
relaxation and diffusion-mediated susceptibility losses in tissues, Magn.
Reson. Med. 22 (1991) 197–203.
[21] M.D. Does, J. Zhong, J.C. Gore, In vivo measurement of ADC change due to
intravascular susceptibility variation, Magn. Reson. Med. 41 (1999) 236–240.

[22] V.G. Kiselev, Effect of magnetic field gradients induced by microvasculature on
NMR measurements of molecular self-diffusion in biological tissues, J. Magn.
Reson. 170 (2004) 228–235.

[23] P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Oxford
University Press Inc., New York, 1991.

[24] V.G. Kiselev, The Cumulant Expansion: An Overarching Mathematical
Framework for Understanding Diffusion NMR, in: D. Jones (Ed.), Diffusion
MRI: Theory, Methods and Applications, Oxford University Press, 2010.

[25] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier
Science BV, 1997.

[26] L.D. Landau, E.M. Lifshitz, Statistical Physics. Pt. 1, Pergamon Press, Oxford,
1969.

[27] M.D. Does, E.C. Parsons, J.C. Gore, Oscillating gradient measurements of water
diffusion in normal and globally ischemic rat brain, Magn. Reson. Med. 49
(2003) 206–215.

[28] A.F. Frøhlich, V.G. Kiselev, Effect of impermeable interfaces on apparent
diffusion coefficient in heterogeneous media, Appl. Magn. Reson. 29 (2005)
123–137.

[29] A.F. Frøhlich, S.N. Jespersen, L. Østergaard, V.G. Kiselev, The effect of
impermeable boundaries of arbitrary geometry on the apparent diffusion
coefficient, J. Magn. Reson. 194 (2008) 128–135.

[30] E.C. Parsons, M.D. Does, J.C. Gore, Temporal diffusion spectroscopy: theory and
implementation in restricted systems using oscillating gradients, Magn. Reson.
Med. 55 (2006) 75–84.

http://dx.doi.org/10.1002/mrm.22704
http://dx.doi.org/10.1002/mrm.22704
http://dx.doi.org/10.1038/nphys1936

	Surface-to-volume ratio with oscillating gradients
	Introduction
	Methods
	The second cumulant
	The dispersive diffusivity
	Oscillating gradients

	Results
	Dispersive diffusivity at high frequencies
	Oscillating gradients
	CPMG in a constant gradient

	Discussion
	Conclusions
	Acknowledgments
	References


